Rabu, 30 April 2014
Selasa, 29 April 2014
Fungsi Menu-Menu dan Icon Pada Blogger
POSTING
Dalam menu ini anda dapat membuat ataupun mengedirt postingan ( artikel ) yang telah anda buat ataupun yang baru ingin anda buat, adapun beberapa menu didalamnya sebagai berikut :
NEW ENTRI
Fungsinya adalah untuk membuat postingan baru untuk blog anda, dalam menu inilaha nantinya anda akan membuat berbagai artikel untuk blog anda.
Fungsi-fungsi Gadget Pada Blog
Bagi anda yang baru mengenal blog, Gadget itu adalah fitur tambahan yang berupa elemen yang berguna untuk mempercantik blog serta untuk mempermudah pengunjung blog dalam memahami isi blog kita, yang disediakan oleh penyedia blog anda atau disediuakan oleh pihak ke 3.
Mengenal pengertian dan fungsi gadget pada blog
Penggunaan serta pemasangan widget itu sangat dipermudah oleh pihak-pihak penyedia layanan , sehingga yang anda lakukan hanya tinggal mendaftar atau bahkan ada yang tidak perlu mendaftar sama sekali aliasCuma mengcopy script yang telah disediakan dalam elemen blog.
Gadget yang dapat ditambahkan ke dalam blog jumlahnya sangat banyak, baik yang terdapat dalam layanan blogger itu sendiri, lebih-lebih yang disediakan oleh penyedia lain.
Fungsi Menu Dan Icon Pada Halaman Posting
Adapun tampilah halaman untuk membuat postingan blogspot seperti terlihat pada gambar dibawah ini.
Untuk fungsi dari menu-menu sesuai dengan urutan nomor dalam gambar diatas adalah sebagai berikut :
Undo = berguna untuk membatalkan perubahan terakhir
Rendo = Mengembalikan perubahan ke kondisi terakhir
Font = Mengatur jenis huruf postingan jika menggunakan tempalte dari pihak ke tiga biasanya tidak berpengaruh.
Rabu, 16 April 2014
Rabu, 09 April 2014
HUKUM PASCAL
Hukum Pascal dan Rumus Hukumnya
by Kiki Raven , at 9:38 AM , has 0 komentar
Jika kita bicara tentang Hukum Pascal, inti dari pengertian hukum pascal adalah keterkaitan antara tekanan yang disebabkan oleh zat cair dalam ruang tertutup. Bunyi Hukum Pascal adalah : Tekanan yang ditimbulkan zat cair didalam ruang tertutup diteruskan secara merata ke segala arah.
Contohnya, alat semprot obat nyamuk, ketika kita dorong untuk disemprotkan maka air yang keluar dari lubang penyemprot akan sama besar dan sama kuat. Hal ini menunjukkan bahwa air menekan secara merata ke segala arah.
Pascal`s Law
Pemanfaatan Hukum Pascal yang sangat penting dan berguna sekali adalah dalam hal "memanfaatkan gaya yang kecil menghasilkan gaya yang besar contohnya adalah pompa hidrolik. Pompa ini memiliki 2 buah tabung yang luas penampang tabungnya antar keduanya berbeda. Pada tabung kecil dikerjakan dengan gaya F1. Tekanan yang dihasilkan pada cairan adalah p =F1/ A1
dengan A1 adalah luas penampang dari tabung yang kecil. Tekanan sebesar ini kemudian diteruskan ke permukaan cairan dalam tabung yang besar. Gaya yang bekerja pada permukaan cairan dalam tabung besar adalah
F2 = p A2
F2 = F1 A2
A1
dengan A2 adalah luas penampang tabung besar.
Melihat rumus diatas, maka gaya F2 pada tabung besar dapat diusahakan sebesar mungkin dengan perbandingan A2/A1. Dengan kata lain, luas penampang A2 harus berkali-kali lipat luas penampang A1.
Contoh penggunaan rumus diatas adalah sebagai berikut :
Luas penampang kecil (A1) adalah = 10 cm2
Luas penampang besar (A2) adalah = 1 m2
Perbandingan antara A2/A1 adalah 1000 kali
Hal ini berarti, dengan mengerjakan gaya F1 = 10 N pada tabung kecil, maka gaya yang dihasilkan dan peroleh pada tabung besar adalah :
F2 = F1
= 10 N x 1.000
= 10.000 N
Dengan demikian, gaya 10 N yang kalau kita perkirakan mampu untuk digunakan menekan sebuah paku payu payung pada papan, tetapi mampu menghasilkan gaya sebesar 10.000 N yang kira-kira sama dengan berat mobil sedan.
Contoh soal Hukum Pascal :
Pompa hidrolik mempunya luas penampang kecil 10 cm2. Jika gaya 10 N dapat digunakan untuk mengangkat mobil dengan berat 10.000 N, berapa luas penampang besar?
Jawabannya adalah :
A2 = F1 A1 = 10.000 N X 10 cm2
F2 10 N
= 10.000 cm2
= 1 m2
Penggunaan Hukum Pascal pada berbagai peralatan antara lain :
1. Jembatan Angkat
Contoh penggunaan jembatan angkat ini bisa kita lihat pada bengkel dan tempat pencucian mobil. Dengan diangkatnya mobil maka akan mempermudah perbaikan maupun pembersihan mobil bagian bawah. Didalam reservoir atau bak penampungan cairan jembatan angkat diisi dengan minyak. Diatasnya permukaan minyak terdapat udara yang dimampatkan atau dipadatkan sehingga mempunyai tekanan yang tinggi. Ketika jembatan angkat ini dipergunakan, maka udara yang mampat ini akan meneruskan tekanan kebagian bawah penghisap yang selanjutnya akan mengangkat mobil yang diletakkan diatasnya. Dengan cara seperti ini maka akan dengan mudah mengangkat beban mobil yang berat menjadi mudah dilakukan.
2. Dongkrak Hidrolik
Tau dongkrak kan? Alat ini merupakan alat wajib yang harus tersedia didalam mobil karena akan sangat membantu kita untuk mengganti ban mobil kita ketika bocor. Ketika dongkrak ditekan atau diungkit, maka penghisap kecil akan menekan cairan yang berada di reservoir. Cairan ini akan meneruskan tekanan ke penghisap besar sehingga akan mendorong benda yang ada diatasnya.
3. Benda lain yang mempergunakan prinsip dasar Hukum Pascal adalah, Kempa Hidrolik yang biasanya digunakan untuk memeras buah untuk diambil airnya, memadatkan kertas dan lain-lain. Digunakan juga pada Dental Chair atau kursi periksa gigi, pompa ban, elevator atau tangga berjalan untuk menaikkan barang atau orang ke pesawat dan lain-lain.
HUKUM NEWTON
Hukum Kepler terkadang disebut sebagai “Hukum Empiris Kepler.” Sebagai alasan dari hal ini, Kepler secara matematis mampu menunjukkan bahwa posisi planet-planet di langit cocok dengan model yang memerlukan orbit yang elips, kecepatan orbit planet-planet bervariasi dan adanya hubungan matematis antara periode dan sumbu semimayor orbit. Meskipun ini adalah prestasi yang luar biasa, Kepler tidak mampu memberi penjelasan mengapa hukumnya benar – yaitu – mengapa orbit planet elips dan tidak lingkaran? Mengapa periode planet menentukan panjang sumbu semimajor nya?
Isaac Newton diberikan penghargaan untuk penjelasannya dalam menjelaskan kasus kepler, secara teoritis, jawaban atas pertanyaan ini adalah dalam karyanya yang paling terkenal yaitu “Principia.” Dalam Principia, Newton mempresentasikan ketiga hukum-nya:
* Hukum Newton Pertama: setiap benda akan memiliki kecepatan yang konstan kecuali ada gaya yang resultannya tidak nol bekerja pada benda tersebut. Berarti jika resultan gaya nol, maka pusat massa dari suatu benda tetap diam, atau bergerak dengan kecepatan konstan (tidak mengalami percepatan).
* Hukum Newton Kedua: sebuah benda dengan massa M mengalami gaya resultan sebesar F akan mengalami percepatan a yang arahnya sama dengan arah gaya, dan besarnya berbanding lurus terhadap F dan berbanding terbalik terhadap M. atau F=Ma. Bisa juga diartikan resultan gaya yang bekerja pada suatu benda sama dengan turunan dari momentum linear benda tersebut terhadap waktu.
* Hukum Newton Ketiga: gaya aksi dan reaksi dari dua benda memiliki besar yang sama, dengan arah terbalik, dan segaris. Artinya jika ada benda A yang memberi gaya sebesar F pada benda B, maka benda B akan memberi gaya sebesar –F kepada benda A. F dan –F memiliki besar yang sama namun arahnya berbeda. Hukum ini juga terkenal sebagai hukum aksi-reaksi, dengan F disebut sebagai aksi dan –F adalah reaksinya.
hukum gravitasi universal
hukum gravitasi universal:
Gaya gravitasi antara dua massa adalah 2013-11-21_052952
Artinya, gaya gravitasi bergantung pada kedua massa mereka, sebuah konstanta (G), dan dibagi dengan kuadrat jarak. Dalam persamaan ini, d, jarak, diukur dari pusat objek. Artinya, jika Anda ingin mengetahui gaya gravitasi pada Anda dari Bumi, Anda harus menggunakan jari-jari Bumi sebagai d, karena Anda yang jauh dari pusat bumi.
Dengan menggunakan hukum-hukum ini dan teknik matematika kalkulus (yang Newton temukan), Newton mampu membuktikan bahwa planet-planet mengorbit Matahari karena gaya tarik gravitasi yang mereka rasakan dari Matahari. Cara kerja orbit adalah sebagai berikut (ini adalah eksperimen yang terkadang disebut meriam Newton):
Pikirkan sebuah meriam di sebuah gunung tinggi yang berlokasi dekat dengan kutub utara bumi. Jika anda ingin menembak meriam secara horizontal sejajar dengan permukaan bumi maka meriam itu akan turun secara vertikal ke permukaan bumi dan disaat yang sama meriam itu akan bergerak secara horizontal dari gunung, dan akhirnya jatuh kepermukaan Bumi lagi. Kemudian, jika Anda kembali menembakan meriam dengan kekuatan berlebih maka ia akan terlempar jauh dari gunung sebelum ia kembali jatuh kepermukaan Bumi. Nah pertanyaan selanjutnya, apa yang akan terjadi jika Anda menembakkan sebuah meriam dengan begitu banyak tenaga yang jumlah tenaga tembakan vertikal meriamnya menuju permukaan besarnya sama dengan jumlah gaya tarik bumi karena bentuknya bulat? — Artinya, jika Anda bisa menembak proyektil dengan kekuatan yang cukup, itu akan jatuh ke bumi seperti proyektil lainnya, tapi itu akan selalu ketinggalan menabrak bumi! Untuk contoh ini, lihat ini
Meski Bumi tidak pernah ditembak dengan meriam yang telah kita bicarakan diatas, hukum fisika serupa tetap berlaku. Pikirkan Bumi sedang berada pada posisi jam 3 di orbitnya yang mengelilingi Matahari. Jika bumi diluar angkasa bersifat bebas dan dapat jatuh ke kedalaman luar angkasa melalui ruang tanpa mengalami gaya apapun, oleh hukum pertama Newton, Bumi hanya akan terus jatuh kekedalaman luar angkasa dalam sebuah garis lurus. Namun hal itu tidak pernah terjadi, faktanya Matahari memberikan gaya tarik terhadap bumi sehingga bumi merasakan tarikan terhadap Matahari dan hal ini menyebabkan Bumi tidak jatuh ke arah Matahari sedikit. Kombinasi Bumi jatuh melalui ruang dan terus-menerus sedang menarik sedikit ke arah Matahari menyebabkan ia mengikuti jalan melingkar mengelilingi matahari. Efek ini dapat digambarkan dalam animasi berikut:
flash
Menggunakan teknik kalkulus, sebenarnya Anda dapat memperoleh semua Hukum Kepler dari Hukum Newton. Artinya, Anda dapat membuktikan bahwa bentuk orbit yang disebabkan oleh gaya gravitasi seharusnya elips. Anda dapat menunjukkan bahwa kecepatan suatu benda meningkat pada saat dekat perihelion dan berkurang saat ia mendekati aphelion. Anda dapat menunjukkan bahwa 2013-11-21_053014. Bahkan, Newton mampu menurunkan nilai konstanta, k, dan hari ini kita menuliskan versi Hukum Newton dari hukum Ketiga Kepler dengan cara ini:
2013-11-21_053024
Yang berarti bahwa k 2013-11-21_053036
Jika kita menggunakan versi Hukum Newton dari hukum Ketiga Kepler, kita dapat melihat bahwa jika Anda dapat mengukur P dan mengukur a untuk sebuah objek di orbit, maka anda dapat menghitung jumlah massa dari dua benda! Sebagai contoh, dalam kasus Matahari dan Bumi, 2013-11-21_053055, jadi hanya dengan mengukur PEarth dan aEarth, Anda dapat menghitung mSun + MEarth!
Hal ini merupakan dasar dari laboratorium yang akan kita lakukan selama unit ini. Anda akan menemukan P dan a untuk beberapa Bulan Jupiter, dan Anda akan menggunakan data tersebut untuk menghitung massa Jupiter.
Terakhir, saya ingin setiap orang untuk melakukan perhitungan cepat menggunakan rumus Hukum Newton tentang Gravitasi Universal:
2013-11-21_053120
Untuk saat ini, kita dapat mengabaikan konstata G. Kita akan menghitung rasio, sehingga pada akhirnya konstanta akan dikeluarkan dari rumus ini. Apa yang saya inginkan adalah kita melihat gaya gravitasi “di ruang angkasa.” Artinya, untuk astronot di pesawat ruang angkasa atau International Space Station (ISS), apa yang dirasakan astronot saat ia di luar angkasa dengan gaya gravitasi diluar angkasa dibandingkan dengan gaya gravitasi dibumi saat Anda sedang duduk?
Jika Anda tidak terbiasa dengan melakukan rasio, lakukan langkah berikut demi langkah:
Tuliskan persamaan ini satu kali untuk situasi di Bumi, yaitu:
2013-11-21_053132
Tuliskan persamaan ini kedua kalinya untuk situasi di Luar Angkasa, yaitu:
2013-11-21_053141
Bentuk rasio mengambil persamaan dari # 1 di atas dan meletakkan di atas # 2 di atas, yaitu:
2013-11-21_053154
Pada poin ini, jika Anda ingat dari aturan aljabar, ketika Anda memiliki jumlah kuantitas di atas dan dibawah pecahan yang sama, mereka membatalkan. Sehingga, Anda dapat mencoret segala sesuatu di sisi kanan ketika anda menemukan pada kedua bagian atas dan bawah, yaitu G, m1, dan m2.
Setelah anda menghapusnya maka :
2013-11-21_053208
Hal ini memberitahukan kepada Anda bahwa perbandingan antara gaya gravitasi yang Anda rasakan di Bumi dengan gaya gravitasi yang Anda rasakan di luar angkasa hanya berkaitan dengan jarak antara Bumi dan Anda dalam kedua kasus. Dalam kasus 1, ketika Anda berada di Bumi, Anda akan berada pada jari-jari Bumi, sekitar 6400 km. Pesawat ruang angkasa dan ISS tidak mengorbit jauh dari Bumi. Sejumlah alasan yang wajar untuk jarak antara permukaan bumi dan ISS adalah sekitar 350 km. Jadi, jika kita tambahkan jarak antara Bumi dan ISS untuk menghitung gaya gravitasi di ISS maka hasilnya (6400 km + 350 km) = 6750 km. Lantas seberapa kuat gaya gravitasi yang kita rasakan antara di bumi dan diluar angkasa? Lanjutkan dengan mengisi nilai-nilai untuk donEarth dan dinSpace dan menghitung perbandingan ini.
KESETIMBANGAN KIMIA
KESETIMBANGAN KIMIA
TUJUAN PEMBELAJARAN
Setelah mengikuti pembelajaran siswa dapat :
1. menjelaskan pengertian reaksi kesetimbangan,
2. menjelaskan faktor-faktor yang mempengaruhi pergeseran arah kesetimbangan,
3. menentukan harga konstanta kesetimbangan, Kc dan Kp,
4. menjelaskan kondisi optimum untuk memproduksi bahan-bahan kimia di industri
Reaksi-reaksi yang dilakukan di laboratorium pada umumnya berlangsung
satu arah. Tetapi ada juga reaksi yang dapat berlangsung dua arah atau dapat
balik. Reaksi searah disebut juga reaksi irreversibel. Reaksi dapat balik atau dapat
berubah lagi menjadi zat-zat semula disebut juga reaksi reversibel.
Reaksi dapat balik yang terjadi dalam satu sistem dan laju reaksi ke arah hasil
atau sebaliknya sama disebut reaksi dalam keadaan setimbang atau reaksi
kesetimbangan. Reaksi kesetimbangan banyak terjadi pada reaksi-reaksi dalam
wujud gas. Sistem yang termasuk reaksi kesetimbangan disebut sistem
kesetimbangan
A. Reaksi Kesetimbangan
Sebelum mempelajari reaksi kesetimbangan, kita perhatikan dulu contoh
reaksi searah dan reaksi dapat balik.
Contoh reaksi searah yaitu reaksi antara batu pualam dengan asam klorida
dengan reaksi: CaCO3(s) + 2 HCl(aq) →CaCl2(aq) + CO2(g) + H2O(l). Kalau kita
reaksikan lagi hasil reaksi tersebut tidak akan kembali lagi. Reaksi ini disebut juga
reaksi berkesudahan.
Contoh reaksi dapat balik yaitu pemanasan kristal tembaga(II) sulfat hidrat.
Kristal tembaga(II) sulfat hidrat berwarna biru jika dipanaskan akan berubah
menjadi tembaga(II) sulfat berwarna putih.
Jika pada tembaga (II) sulfat diteteskan air maka akan berubah lagi menjadi
tembaga(II) sulfat hidrat. Reaksinya ditulis sebagai berikut.
CuSO4.5 H2O(s) → CuSO4(s) + 5 H2O(g)
biru putih
CuSO4(s) + 5 H2O(l) → CuSO4.5 H2O(s)
putih biru
Reaksi yang dapat balik, dapat ditulis dengan tanda panah yang berlawanan,
(↔ ). Persamaan reaksi di atas dapat ditulis:
CuSO4.5 H2O(s)→ CuSO4(s) + 5 H2O(l)
Setelah mempelajari reaksi searah dan reaksi dapat balik, sekarang kita
pelajari reaksi kesetimbangan.
Coba perhatikan reaksi antara larutan besi(III) klorida dengan larutan kalium
tiosianat yang menghasilkan ion besi(III) tiosianat.
Ditinjau dari reaksi searah maka kedua pereaksi tersebut akan habis karena
jumlah mol zat yang bereaksinya sama. Apa yang terjadi apabila pada zat hasil
reaksi ditambahkan 1 tetes larutan FeCl3 1 M atau 1 tetes larutan KSCN 1 M?
Apakah ada perubahan warna? Jika terjadi, mengapa?
Pada penambahan ion SCN– warna merah bertambah tua berarti terbentuk
lagi ion Fe(SCN)2+, atau ion SCN– yang ditambahkan bereaksi lagi dengan ion Fe3+.
Darimana ion Fe3+? Menurut perhitungan jika 10 mL larutan FeCl3 0,001 M bereaksidengan 10 mL KSCN 0,001 M kedua zat akan habis bereaksi atau ion Fe2+ dan ionSCN– sudah habis bereaksi. Demikian pula pada penambahan ion Fe3+ akanterbentuk kembali Fe(SCN)2+, berarti ion Fe3+ bereaksi lagi dengan ion SCN–.
Darimana ion SCN– tersebut? Dari data percobaan tersebut dapat disimpulkan ionFe3+ dan ion SCN– selalu ada pada sistem karena Fe(SCN)2+ secara langsung
dapat terurai lagi menjadi ion Fe3+ dan ion SCN–.
Oleh karena reaksi tersebut terjadi pada sistem tertutup maka reaksi ini
disebut reaksi kesetimbangan.
Reaksinya ditulis:
Fe3+(aq) + SCN–(aq)→ Fe(SCN)2+(aq)
Pada reaksi ini pembentukan Fe(SCN)2+ dan penguraiannya menjadi ion Fe3+
dan SCN– tidak dapat diamati karena berlangsung pada tingkat partikel. Reaksi ini
disebut juga reaksi kesetimbangan dinamis.
Ciri-ciri keadaan setimbang dinamis adalah sebagai berikut.
1. Reaksi berlangsung terus-menerus dengan arah yang berlawanan.
2. Terjadi pada ruangan tertutup, suhu, dan tekanan tetap.
3. Laju reaksi ke arah hasil reaksi dan ke arah pereaksi sama.
4. Tidak terjadi perubahan makroskopis, yaitu perubahan yang dapat diukur atau
dilihat, tetapi perubahan mikroskopis (perubahan tingkat partikel) tetap
berlangsung.
5. Setiap komponen tetap ada.
Reaksi kesetimbangan dinamis yaitu reaksi yang berlangsung terus-menerus
dengan arah yang berlawanan dan kecepatan yang sama. Dalam kehidupan
sehari-hari, contoh reaksi kesetimbangan dinamis dapat dilihat pada permainan
sirkus seperti Gambar
Pada permainan sirkus, ada seekor
burung yang mencoba berjalan pada
roda yang berputar. Burung berjalan ke
kiri, sedangkan roda berputar ke kanan.
Jika kecepatan roda ke kanan sama
dengan kecepatan burung berjalan,
maka posisi burung itu akan tetap dan
kelihatan diam.
Kejadian itu disebut keadaan setimbangdinamis sebab burung kelihatan
diam padahal kakinya berjalan terus
dengan arah yang berlawanan dengan
roda berputar.
Pada saat setimbang, ada beberapa kemungkinan yang terjadi dilihat dari
konsentrasi pereaksi atau hasil reaksi pada saat itu.Contoh:
Pada reaksi A + B→ C + D ada 3 kemungkinan yang terjadi yaitu sebagai baeikut
Kemungkinan I ditunjukkan pada
Gambar
a. Mula-mula konsentrasi A dan B harganya
maksimal, kemudian berkurang
sampai tidak ada perubahan.
b. Konsentrasi C dan D dari nol
bertambah terus sampai tidak ada
perubahan.
c. Pada saat setimbang, konsentrasi C
dan D lebih besar daripada A dan B.
Kemungkinan II ditunjukkan pada
Gambar 5.4.
Perubahan konsentrasi A dan B menjadi
C dan D sama seperti kemungkinan I.
Pada saat setimbang, konsentrasi C dan
D lebih kecil daripada A dan B
Kemungkinan III ditunjukkan pada
Gambar 5.5.
Perubahan konsentrasi A dan B
menjadi C dan D sama seperti kemungkinan
I dan II, tetapi pada saat setimbang
konsentrasi A dan B sama dengankonsentrasi C dan D.
B. Reaksi Kesetimbangan Homogen dan Reaksi
Kesetimbangan Heterogen
Berdasarkan wujud zatnya reaksi kesetimbangan dikelompokkan menjadi
kesetimbangan homogen dan kesetimbangan heterogen.
1. Kesetimbangan Homogen
Kesetimbangan homogen adalah sistem kesetimbangan yang komponennya
mempunyai wujud yang sama.
Contoh:
a. Reaksi kesetimbangan yang terdiri atas gas-gas
2 SO2(g) + O2(g) ↔2 SO3(g)
N2(g) + 3 H2(g) 2↔ NH3(g)
b. Reaksi kesetimbangan yang terdiri atas ion-ion
Fe3+(aq) + SCN–(aq)↔ Fe(SCN)2+(aq)
c. Reaksi kesetimbangan yang terdiri atas zat berwujud cair
CH3COOH(l) + CH3CH2OH(l)↔ CH3COOCH2CH3(l) + H2O(l)
2. Kesetimbangan Heterogen
Kesetimbangan heterogen adalah sistem kesetimbangan yang komponennya
terdiri atas zat-zat dengan wujud yang berbeda.
Contoh:
a. Reaksi kesetimbangan yang terdiri atas zat cair, gas, dan larutan
Reaksi: CO2(g) + H2O(l)↔ H2CO3(aq)
b. Reaksi kesetimbangan yang terdiri atas zat padat dan gas
C(s) + 2 N2O(g)↔ CO2(g) + 2 N2(g)
c. Reaksi kesetimbangan yang terdiri atas zat padat, cair, dan gas
ICI(l) + Cl2(g)↔ ICl3(g)
Faktor-Faktor yang Mempengaruhi Reaksi Kesetimbangan
Azas Le Chatelier yang berbunyi:
Jika suatu sistem kesetimbangan menerima suatu aksi maka sistem tersebut
akan mengadakan reaksi, sehingga pengaruh aksi menjadi sekecil-kecilnya
Faktor-faktor yang dapat mempengaruhi sistem kesetimbangan adalah perubahansuhu, perubahan konsentrasi, perubahan tekanan, dan perubahan volum
1. Pengaruh Perubahan Suhu pada Kesetimbangan
Reaksi kesetimbangan dapat merupakan reaksi eksoterm maupun endoterm.
Pada reaksi-reaksi ini perubahan suhu sangat berpengaruh. Contohnya pada
reaksi kesetimbangan antara gas nitrogen dioksida dan dinitrogen tetraoksida
dengan reaksi:
2 NO2(g) ↔ N2O4(g) ΔH = –59,22 kJ
coklat tak berwarna
t = 0°C t = 25°C t = 10°C
Pada suhu kamar, sistem kesetimbangan tersebut berwarna coklat. Bagaimana
jika sistem kesetimbangan ini suhunya diubah?
Perhatikan gambar percobaan berikut ini!
Berdasarkan percobaan di atas diperoleh data sebagai berikut.
a. Jika suhu dinaikkan, warna coklat bertambah artinya gas NO2 bertambah.
b. Jika suhu diturunkan, warna coklat berkurang artinya gas N2O4 bertambah.
Dengan melihat reaksi eksoterm dan endoterm pada reaksi tersebut, maka
dapat disimpulkan:
• Jika suhu dinaikkan, kesetimbangan bergeser ke arah reaksi endoterm.
• Jika suhu diturunkan, kesetimbangan bergeser ke arah reaksi eksoterm.
Contoh:
a. Pada reaksi 2 CO2(g)→ 2 CO(g) + O2(g) ΔH° = +566 kJ
Jika suhu diturunkan, kesetimbangan akan bergeser ke arah CO2.
Jika suhu dinaikkan, kesetimbangan akan bergeser ke arah CO dan O2.
b. CO(g) + H2O(g)→ CO2(g) + H2(g) ΔH = -41 kJ
Jika suhu diturunkan, kesetimbangan akan bergesar ke arah CO2 dan H2.
Jika suhu dinaikan, kesetimbangan akan bergeser ke arah CO dan H2O.
2. Pengaruh Perubahan Konsentrasi pada Tekanan
Untuk mempelajari pengaruh perubahan konsentrasi pada kesetimbangan,
perhatikan percobaan penambahan ion-ion dan zat lain pada sistem kesetimbangan
berikut.
Fe3+(aq) + SCN–(aq) ↔ Fe(SCN)2+(aq)
coklat tak berwarna merah
Pengaruh Perubahan Konsentrasi
Percobaan ini bertujuan untuk mengamati pengaruh perubahan konsentrasi
terhadap pergeseran kesetimbangan pada reaksi ion Fe3+ dan ion SCN–.
Alat dan bahan:
1. Gelas kimia 100 mL 5. Larutan FeCl3 0,2 M
2. Tabung reaksi 6. Larutan KSCN 0,2 M
3. Rak tabung 7. Kristal Na2HPO4
4. Pipet tetes 8. Air mineral
Langkah kerja:
1. Isi gelas kimia dengan 25 mL, air tambahkan 5 tetes FeCl3 0,2 M dan
5 tetes KSCN 0,2 M aduk sampai rata. Amati warna larutan.
2. Tuangkan larutan tersebut ke dalam 5 buah tabung reaksi yang sama
volumnya dan beri nomor tabung 1 sampai dengan 5.
3. • Pada tabung 2 tambahkan 5 tetes larutan FeCl3 0,2 M.
• Pada tabung 3 tambahkan 5 tetes larutan KSCN 0,2 M.
• Pada tabung 4 tambahkan 2 serbuk Na2HPO4.
• Pada tabung 5 tambahkan 5 mL air.
4. Bandingkan warna larutan yang terjadi pada tabung 2, 3, 4, dan 5
dengan warna larutan asal pada tabung 1.Pada tabung ke-5 warna
larutan dilihat dari atas tabung.
6. Catat hasil pengamatan pada sebuah tabel.
Pertanyaan:
1. Jelaskan apa yang menyebabkan terjadinya perubahan warna pada
percobaan di atas!
2. Jelaskan bagaimana pengaruh penambahan atau pengurangan
konsentrasi pereaksi pada percobaan di atas!
3. Jelaskan apakah penambahan air pada tabung 5 mempengaruhi
sistem kesetimbangan!
Sesuai dengan azas Le Chatelier jika salah satu zat konsentrasinya diperbesar,
reaksi akan bergeser ke arah yang berlawanan, jika salah satu zat konsentrasinya
diperkecil, reaksi akan bergeser kearah zat tersebut.
Perhatikan reaksi kesetimbangan berikut.
Fe3+(aq)+ SCN–(aq)↔ FeSCN–(aq)
coklat tak berwarna merah
Pada percobaan ini didapat bahwa penambahan ion Fe3+ dan SCN–
menyebabkan larutan standar menjadi lebih merah, berarti ion Fe(SCN)2+bertambah.
Pada kesetimbangan ini adanya penambahan ion Fe3+ dan ion SCN–menyebabkan
kesetimbangan bergeser ke arah ion Fe(SCN)2+.
Pada penambahan kristal Na2HPO4, mengakibatkan warna merah pada
larutan berkurang, sebab jumlah ion Fe(SCN)2+ berkurang. Mengapa ion Fe(SCN)2+
berkurang?
Kristal Na2HPO4 berfungsi untuk mengikat ion Fe3+, maka untuk menjaga
kesetimbangan, ion Fe(SCN)2+ akan terurai lagi membentuk ion Fe3+ dan SCN–
atau kesetimbangan bergeser ke arah ion Fe3+ dan SCN–.
Dari eksperimen di atas dapat disimpulkan:
• Jika pada sistem kesetimbangan salah satu komponen ditambah,
kesetimbangan akan bergeser ke arah yang berlawanan.
• Jika pada sistem kesetimbangan salah satu komponennya dikurangi ,
kesetimbangan akan bergeser ke arah komponen tersebut
Contoh:
a. N2(g) + 3 H2(g)→ 2 NH3(g)
• Jika gas N2 ditambah, kesetimbangan akan bergeser ke arah NH3.
• Jika gas N2 dikurangi, kesetimbangan akan bergeser ke arah N2.
b. 2 HCl(g)→ H2(g) + Cl2(g)
• Jika gas HCl ditambah, kesetimbangan bergeser ke arah H2 dan Cl2.
• Jika gas HCl dikurangi, kesetimbangan bergeser ke arah H
3. Pengaruh Perubahan Tekanan pada Kesetimbangan
• Jika tekanan diperbesar, kesetimbangan akan bergeser ke arah komponen
yang jumlah molnya lebih kecil.
• Jika tekanan diperkecil, kesetimbangan akan bergeser ke arah komponen
yang jumlah molnya lebih besar
Contoh:
a. Reaksi: N2(g) + 3 H2(g) →2 NH3(g).
Pada reaksi di atas, jika tekanan diperbesar, kesetimbangan bergeser ke arah
gas NH3serta jika tekanan diperkecil, kesetimbangan bergeser ke arah gas N2
dan H2.
b. Reaksi:H2(g) + I2(g)→ 2 HI(g)
Perubahan tekanan pada kesetimbangan di atas tidak menyebabkan
pergeseran kesetimbangan, sebab jumlah mol pereaksi sama dengan mol
hasil reaksi.
c. Reaksi: C(s) + 2 N2O(g)→ CO2(g) + 2 N2(g)
Tekanan tidak mempengaruhi komponen yang berwujud padat atau cair.
Pada kesetimbangan di atas, jika tekanan diperbesar kesetimbangan akan
bergeser ke arah gas N2O dan jika tekanan diperkecil kesetimbangan akan
bergeser ke arah gas CO2 dan N2.
4. Pengaruh Perubahan Volum pada Kesetimbangan
Perubahan volum pada kesetimbangan bergantung pada komponennya, baik
komponen gas atau komponen ion-ion.
a. Perubahan Volum pada Kesetimbangan yang Komponennya Gas
Untuk komponen gas,
• jika volum diperbesar maka kesetimbangan bergeser ke arah komponen
yang jumlah molnya besar.
• jika volum diperkecil maka kesetimbangan bergeser ke arah komponen
yang jumlah molnya kecil
Contoh:
1) PCl5(g)↔ PCl3(g) + Cl2(g)
• Jika volum diperbesar, kesetimbangan akan bergeser ke arah gas PCl3
dan Cl2.
• Jika volum diperkecil, kesetimbangan akan bergeser ke arah gas PCl5.
2) C(s) + CO2(g)↔ 2CO(g)
• Jika volum diperbesar, kesetimbangan akan bergeser ke arah gas CO.
• Jika volum diperkecil, kesetimbangan akan bergeser ke arah CO2
b. Perubahan Volum pada Kesetimbangan yang Komponen-
Komponennya Berupa Ion-Ion
Untuk mempelajari pengaruh perubahan volum pada kesetimbangan ini,
salah satu contohnya pengenceran pada kesetimbangan:
Fe2+(aq) + SCN–(aq)↔ Fe(SCN)2+(aq)
tidak berwarna merah
Pengenceran pada kesetimbangan ini mengakibatkan warna merah berkurang
atau kesetimbangan bergeser ke arah ion Fe2+ dan SCN–.
Pengenceran pada larutan menyebabkan volum menjadi besar, maka untuk
kesetimbangan yang jumlah mol atau jumlah partikel pereaksi dan hasil reaksinyaberbeda,kesetimbangan akanbergeser ke arah partikel yang jumlahnya lebih besar
5. Reaksi Kesetimbangan dalam Industri
a. Pembuatan Amonia
Amonia (NH3) merupakan senyawa nitrogen yang banyak digunakan sebagai
bahan dasar pembuatan pupuk urea dan ZA, serat sintetik (nilon dan sejenisnya),
dan bahan peledak TNT (trinitro toluena). Pembuatan amonia yang dikemukakan
oleh Fritz Haber (1905), prosesnya disebut Proses Haber. Reaksi yang terjadi
adalah kesetimbangan antara gas N2, H2, dan NH3 ditulis sebagai berikut.
N2(g) + 3 H2(g) 2↔ NH3(g) ΔH = –92 kJ
Untuk proses ini, gas N2 diperoleh dari hasil penyulingan udara, sedangkan
gas H2 diperoleh dari hasil reaksi antara gas alam dengan air. Pada suhu kamar,
reaksi ini berlangsung sangat lambat maka untuk memperoleh hasil yang maksimal,reaksi dilakukan pada suhu tinggi, tekanan tinggi, dan diberi katalis besi.
Reaksi pembentukan amonia merupakan reaksi eksoterm. Menurut Le Chatelier
kesetimbangan akan bergeser ke arah NH3 jika suhu rendah. Masalahnya adalah
katalis besi hanya berfungsi efektif pada suhu tinggi, akibatnya pembentukan
amonia berlangsung lama pada suhu rendah.
Berdasarkan pertimbangan ini proses pembuatan amonia dilakukan pada
suhu tinggi ±450°C (suhu optinum) agar reaksi berlangsung cepat sekalipun
dengan resiko kesetimbangan akan bergeser ke arah N2dan H2. Untuk mengimbangi
pergeseran ke arah N2 dan H2 oleh suhu tinggi, maka tekanan yang digunakan
harus tinggi sampai mencapai antara 200–400 atm. Tekanan yang tinggi
menyebabkan molekul-molekul semakin rapat sehingga tabrakan molekul-molekul
semakin sering. Hal ini mengakibatkan reaksi bertambah cepat, sehingga NH3
semakin banyak terbentuk. Selain itu untuk mengurangi NH3 kembali menjadi N2dan H2 maka NH3 yang terbentuk segera dipisahkan.
Campuran gas kemudian didinginkan sehingga gas NH3 mencair. Titik didih
gas NH3 lebih tinggi dari titik didih gas N2 dan H2, maka gas NH3 akan terpisah
sebagai cairan. Gas nitrogen dan gas hidrogen yang belum bereaksi dan gas NH3
yang tidak mencair diresirkulasi, dicampur dengan gas N2 dan H2, kemudian
dialirkan kembali ke dalam tangki.
Bagan pembuatan amonia secara sederhana dapat dilihat pada Gambar
b. Pembuatan Asam Sulfat
Salah satu cara pembuatan asam sulfat secara industri yang produknya cukup
besar adalah dengan proses kontak. Bahan yang digunakan pada proses ini
adalah belerang dan prosesnya berlangsung sebagai berikut.
1) Belerang dibakar di udara sehingga akan bereaksi dengan oksigen dan
menghasilkan gas belerang dioksida.
Reaksi: S(s) + O2(g) ↔ SO2(g)
2) Belerang dioksida direaksikan lagi dengan oksigen dan dihasilkan belerang
trioksida.
Reaksi: 2 SO2(g) + O2(g) 2 SO3(g) ΔH = –196,6 kJ.
Reaksi ini merupakan reaksi kesetimbangan dan eksoterm sehingga suhu
tidak dilakukan pada suhu tinggi tetapi ±450°C, untuk menghindari
kesetimbangan ke arah SO2 dan O2.
3) Reaksi ini berlangsung lambat, maka dipercepat dengan katalis. Katalis yang
digunakan adalah vanadium pentaoksida (V2O5).
4) Tekanan seharusnya lebih tinggi, tetapi pada prakteknya karena ada katalis
maka SO3 sudah cukup banyak terbentuk sehingga tekanan dilakukan pada
keadaan normal yaitu 1 atm.
5) SO3 yang dihasilkan segera dipisahkan sehingga kesetimbangan bergeser
terus ke arah SO3. SO3 yang dihasilkan direaksikan dengan H2SO4 pekat dan
membentuk asam pirosulfat (H2S2O7). Asam pirosulfat akan direaksikan
dengan air sampai menghasilkan asam sulfat ±98%.
Reaksi:
SO3(g) + H2SO4(aq) ↔ H2S2O7(aq)
H2S2O7(aq) + H2O(l) ↔2 H2SO4(l)
D. Konstanta Kesetimbangan
Menurut Gulberg dan Waage, pada suhu tetap harga konstanta kesetimbangan
akan tetap. Hal ini dirumuskan sebagai Hukum Kesetimbangan yang berbunyi
sebagai berikut.
Pada reaksi kesetimbangan, hasil kali konsentrasi zat hasil reaksi yang
dipangkatkan koefisiennya dibagi dengan hasil kali konsentrasi zat pereaksi
yang dipangkatkan koefisiennya akan tetap, pada suhu tetap.
Untuk lebih memahami tentang hukum ini, perhatikan data beberapa harga
konstanta kesetimbangan reaksi antara CO dengan H2 pada suhu tetap dengan
konsentrasi yang berbeda pada Tabel 5.1.
Reaksinya: CO(g) + 3 H2(g)↔ CH4(g) + H2O(g) T = 1200 K
1. Konstanta Kesetimbangan Berdasarkan Konsentrasi
Konstanta kesetimbangan berdasarkan konsentrasi dinyatakan dengan notasi
Kc, yaitu hasil kali konsentrasi zat-zat hasil reaksi dibagi hasil kali zat-zat pereaksi,
setelah masing-masing konsentrasi dipangkatkan koefisiennya pada reaksi tersebut.
Jadi, pada kesetimbangan m A(g) + n B(g) p C(g) + q D(g), harga KC adalah:
Contoh Soal
1. Tentukan harga Kc dari reaksi kesetimbangan PCl5(g)↔ PCl3(g) + Cl2(g), jika
diketahui data konsentrasi zat-zat pada kesetimbangan sebagai berikut
2.
Konstanta Kesetimbangan Berdasarkan Tekanan
Konstanta kesetimbangan berdasarkan tekanan dinyatakan dengan simbol
Kp, yaitu hasil kali tekanan parsial gas-gas hasil reaksi dibagi dengan hasil kali
tekanan parsial gas-gas pereaksi, setelah masing-masing gas dipangkatkan
dengan koefisiennya menurut persamaan reaksi. Jadi, konstanta kesetimbangan
pada reaksi: m A(g) + n B(g) p↔ C(g) + q D(g) yaitu:
PA = tekanan parsial A
PB = tekanan parsial B
PC = tekanan parsial C
PD = tekanan parsial D
Tekanan parsial diberi lambang P dan ditentukan dengan rumus:
P = Jumlah mol gas X /Jumlah mol total semua gasx Tekanan total
Untuk menentukan Kp tekanan gas dapat dinyatakan dengan cm Hg atau
atmosfer (atm)
Contoh Soal
1. Pada temperatur 500 K ke dalam bejana yang volumnya 5 liter dimasukkan 0,6
mol gas HI sehingga terjadi reaksi kesetimbangan 2 HI(g) H2(g) + I2(g). Bila
setelah sistem mencapai keadaan kesetimbangan masih terdapat 0,3 mol HI,
tentukan harga konstanta kesetimbangan Kppada temperatur 500 K (R = 0,082).
Penyelesaian:
Persamaan reaksi: 2 HI(g) H2(g) + I2(g)↔HI yang terurai = (0,6 – 0,3) mol = 0,3 mol
HI sisa = 0,3 mol
H2 yang terbentuk = 1/2 .0,3 mol = 0,15 mol
I2 yang terbentuk = 1/2 .0,3 mol = 0,15 mol
Untuk mendapatkan harga P, gunakan rumus: P =n/V.R.T
PHI =0 ,3/5 .0,082. 500 atm = 2,46 atm
PH2 =0 ,15/5.0,082.500 atm = 1,23 atm
PI2 =0 ,15/5 .0,082.500 atm = 1,23 atm
3. Hubungan Kc dengan Kp
Hubungan Kc dengan Kp dapat ditentukan berdasarkan rumus PV = nRT
Jika jumlah koefisien hasil reaksi sama dengan jumlah koefisien pereaksi
(Δn = 0) maka Kp = Kc.
Contoh Soal
1. Pada reaksi setimbang: 2 SO2(g) + O2(g) 2 SO3(g).
Harga Kc = 2,8 x 102, pada 1000 Kelvin. Hitung harga Kp, jika R = 0,082.
Penyelesaian:
Kp = Kc(RT)Δn
Pada reaksi di atas Δn = 2 – (2 + 1) = –1
Dengan demikian harga Kp = 2,8 x 102 (0,082 x 1000)–1 = 3,4
2. Pada suhu 25oC terdapat kesetimbangan : 2 NO(g) + Cl2(g)↔ 2 NOCl(g).
Harga Kc = 4,6 . 10–4, tentukan Kp jika R = 0,082.
Penyelesaian:
Kp = Kc.(RT)Δn
= 4,6 . 10–4 (0,082 x 298)–1
= 1,88 x 10–5
4. Konstanta Kesetimbangan Heterogen
Kesetimbangan heterogen adalah kesetimbangan yang komponennya terdiri
dari zat-zat yang wujudnya berbeda.
Contoh: Br2(l)↔ Br2(g)
CaCO3(s)↔ CaO(s) + CO2(g)
Ag+(aq) + Fe2+(aq)↔ Ag(s) + Fe3+(aq)
Konstanta kesetimbangan untuk reaksi CaCO3(s) ↔CaO(s) + CO2(g)
menurut hukum kesetimbangan adalah
Oleh karena CaCO3 dan CaO berwujud padat yang pada kesetimbangan
dianggap tetap maka konstanta kesetimbangan tersebut menjadi:
Kc = [CO2] dan Kp = PCO2
PENGERTIAN HIDROLISIS GARAM
Hidrolisis garam adalah “ terurainya garam dalam air yang menghasilkan asam dan atau basa. ”
Bagaimanakah Hidrolisis dapat terjadi?
Hidrolisis garam hanya terjadi JIKA salah satu atau kedua komponen penyusun garam tersebut berupa asam lemah dan atau basa lemah. Jika komponen garam tersebut berupa asam kuat dan basa kuat, maka komponen ion dari asam kuat atau pun basa kuat tersebut Tidak akan terhidrolisis. Berdasarkan penjelasan tadi, maka kation dan anion yang dapat mengalami reaksi hidrolisis adalah kation dan anion garam yang termasuk elektrolit lemah. Sedangkan kation dan anion garam yang termasuk elektrolit kuat tidak terhidrolisis.
Reaksi garam dengan air, dimana komponen garam (kation atau anion) yang berasal dari asam lemah atau basa lemah bereaksi dengan air membentuk ion H3O+ (=H+ ) atau ion OH- .
Jika hidrolisis menghasilkan H3O+ maka larutan bersifat asam, tetapi jika hidrolisis menghasilkan ion OH- maka larutan bersifat basa
TITRASI ASAM BASA
TITRASI ASAM BASA
Salah satu aplikasi stoikiometri larutan adalah titrasi. Titrasi merupakan suatu metode yang bertujuan untuk menentukan banyaknya suatu larutan dengan konsentrasi yang telah diketahui agar tepat habis bereaksi dengan sejumlah larutan yang dianalisis atau ingin diketahui kadarnya atau konsentrasinya. Suatu zat yang akan ditentukan konsentrasinya disebut sebagai “titran” dan biasanya diletakkan di dalam labu Erlenmeyer, sedangkan zat yang telah diketahui konsentrasinya disebut sebagai “titer” atau “titrat” dan biasanya diletakkan di dalam “buret”. Baik titer maupun titran biasanya berupa larutan.
Titrasi biasanya dibedakan berdasarkan jenis reaksi yang terlibat di dalam proses titrasi, sebagai contoh bila melibatkan reaksi asam basa maka disebut sebagai titrasi asam basa atau aside alkalimetri, titrasi redox untuk titrasi yang melibatkan reaksi reduksi oksidasi, titrasi kompleksometri untuk titrasi yang melibatkan pembentukan reaksi kompleks dan lain sebagainya. (Pada site ini hanya dibahas tentang titrasi asam basa).
PRINSIP TITRASI ASAM BASA
Titrasi asam basa melibatkan asam maupun basa sebagai titer ataupun titrant. Kadar larutan asam ditentukan dengan menggunakan larutan basa atau sebaliknya. Titrant ditambahkan titer tetes demi tetes sampai mencapai keadaan ekuivalen ( artinya secara stoikiometri titrant dan titer tepat habis bereaksi) yang biasanya ditandai dengan berubahnya warna indikator. Keadaan ini disebut sebagai “titik ekuivalen”, yaitu titik dimana konsentrasi asam sama dengan konsentrasi basa atau titik dimana jumlah basa yang ditambahkan sama dengan jumlah asam yang dinetralkan : [H+] = [OH-]. Sedangkan keadaan dimana titrasi dihentikan dengan cara melihat perubahan warna indikator disebut sebagai “titik akhir titrasi”. Titik akhir titrasi ini mendekati titik ekuivalen, tapi biasanya titik akhir titrasi melewati titik ekuivalen. Oleh karena itu, titik akhir titrasi sering disebut juga sebagai titik ekuivalen.
Pada saat titik ekuivalen ini maka proses titrasi dihentikan, kemudian catat volume titer yang diperlukan untuk mencapai keadaan tersebut. Dengan menggunakan data volume titran, volume dan konsentrasi titer maka bisa dihitung konsentrasi titran tersebut.
Titrasi asam basa berdasarkan reaksi penetralan (netralisasi). Salah satu contoh titrasi asam basa yaitu titrasi asam kuat-basa kuat seperti natrium hidroksida (NaOH) dengan asam hidroklorida (HCl), persamaan reaksinya sebagai berikut:
NaOH(aq) + HCl(aq) NaCl (aq) + H2O(l)
contoh lain yaitu:
NaOH(aq) + H2SO4(aq) Na2SO4 (aq) + H2O(l)
titration.gif
Gambar set alat titrasi
CARA MENGETAHUI TITIK EKUIVALEN
Ada dua cara umum untuk menentukan titik ekuivalen pada titrasi asam basa, antara lain:
1. Memakai pH meter untuk memonitor perubahan pH selama titrasi dilakukan, kemudian membuat plot antara pH dengan volume titran untuk memperoleh kurva titrasi. Titik tengah dari kurva titrasi tersebut adalah “titik ekuivalen”.
2. Memakai indikator asam basa. Indikator ditambahkan dua hingga tiga tetes (sedikit mungkin) pada titran sebelum proses titrasi dilakukan. Indikator ini akan berubah warna ketika titik ekuivalen terjadi, pada saat inilah titrasi dihentikan. Indikator yang dipakai dalam titrasi asam basa adalah indikator yang perubahan warnanya dipengaruhi oleh pH.
Pada umumnya cara kedua lebih dipilih karena kemudahan dalam pengamatan, tidak diperlukan alat tambahan, dan sangat praktis, walaupun tidak seakurat dengan pH meter. Gambar berikut merupakan perubahan warna yang terjadi jika menggunakan indikator fenolftalein.
Sebelum mencapai titik ekuivalen Setelah mencapai titik ekuivalen
indcolors
RUMUS UMUM TITRASI
Pada saat titik ekuivalen maka mol-ekuivalen asam akan sama dengan mol-ekuivalen basa, maka hal ini dapat ditulis sebagai berikut:
mol-ekuivalen asam = mol-ekuivalen basa
Mol-ekuivalen diperoleh dari hasil perkalian antara normalitas (N) dengan volume, maka rumus diatas dapat ditulis sebagai berikut:
N asam x V asam = N asam x V basa
Normalitas diperoleh dari hasil perkalian antara molaritas (M) dengan jumlah ion H+ pada asam atau jumlah ion OH- pada basa, sehingga rumus diatas menjadi:
(n x M asam) x V asam = (n x M basa) x V basa
Keterangan :
N = Normalitas
V = Volume
M = Molaritas
n = Jumlah ion H +(pada asam) atau OH- (pada basa)
INDIKATOR ASAM BASA
TABEL DAFTAR INDIKATOR ASAM BASA
NAMA
pH RANGE
WARNA
TIPE(SIFAT)
Biru timol
1,2-2,8
merah – kuning
asam
Kuning metil
2,9-4,0
merah – kuning
basa
Jingga metil
3,1 – 4,4
merah – jingga
basa
Hijau bromkresol
3,8-5,4
kuning – biru
asam
Merah metil
4,2-6,3
merah – kuning
basa
Ungu bromkresol
5,2-6,8
kuning – ungu
asam
Biru bromtimol
6,2-7,6
kuning – biru
asam
Merah fenol
6,8-8,4
kuning – merah
asam
Ungu kresol
7,9-9,2
kuning – ungu
asam
Fenolftalein
8,3-10,0
t.b. – merah
asam
Timolftalein
9,3-10,5
t.b. – biru
asam
Kuning alizarin
10,0-12,0
kuning – ungu
basa
Indikator yang sering digunakan dalam titrasi asam basa yaitu indikator fenolftalein. Tabel berikut ini merupakan karakteristik dari indikator fenolftalein.
pH
< 0
0−8.2
8.2−12.0
>12.0
Kondisi
Sangat asam
Asam atau mendekati netral
Basa
Sangat basa
Warna
Jingga
Tidak berwarna
pink keunguan
Tidak berwarna
Gambar
Manfaat tanaman herbal untuk kesehatan
1. TEMULAWAK
Temulawak (Curcuma xanthorhiza roxb) yang termasuk dalam keluarga Jahe (zingiberaceae), Temulawak ini sebagai tanaman obat asli Indonesia. Namun demikian Penyebaran tanaman Temulawak banyak tumbuh di pulau Jawa, Maluku dan Kalimantan. Karakteristik Temulawak tumbuh sebagai semak tanpa batang. Mulai dari pangkalnya sudah berupa tangkai daun yang panjang berdiri tegak. Tinggi tanaman antara 2 m s/d 2,5 m. Daunnya panjang bundar seperti daun pisang yang mana pelepah daunnya saling menutup membentuk batang. Tanaman ini dapat tumbuh subur di dataran rendah dengan ketinggian 750 m diatas permukaan laut, tanaman
SISTEM SARAF MANUSIA
Sistem Saraf Pada Manusia (Artikel Lengkap)
Follow @HediSasrawan
Sistem saraf adalah sistem koordinasi (pengaturan tubuh) berupa penghantaran impul saraf ke susunan saraf pusat, pemrosesan impul saraf dan perintah untuk memberi tanggapan rangsangan. Unit terkecil pelaksanaan kerja sistem saraf adalah sel saraf atau neuron. Sistem saraf sangat berperan dalam iritabilitas tubuh. Iritabilitas memungkinkan makhluk hidup dapat menyesuaikan diri dan menanggapi perubahan-perubahan yang terjadi di lingkungannya. Jadi, iritabilitas adalah kemampuan menanggapi rangsangan.
Sistem saraf termasuk sistem saraf pusat dan sistem saraf perifer (sistem saraf tepi). Sistem saraf pusat terdiri dari otak dan sumsum tulang belakang dan sistem saraf perifer terdiri atas sistem saraf somatik dan sistem saraf otonom. Sistem saraf mempunyai tiga fungsi utama, yaitu menerima informasi dalam bentuk rangsangan atau stimulus; memproses informasi yang diterima; serta memberi tanggapan (respon) terhadap rangsangan.
1. Struktur Saraf
Sistem saraf pada manusia terdiri dari sel saraf yang biasa disebut dengan neuron dan sel gilial. Neuron berfungsi sebagai alat untuk menghantarkan impuls (rangsangan) dari panca indra menuju otak dan kemudian hasil tanggapan dari otak akan dikirim menuju otot. Sedangkan sel gilial berfungsi sebagai pemberi nutrisi pada neuron.
1.1. Sel Saraf (Neuron)
Unit terkecil penyusun sistem saraf adalah sel saraf atau bisa juga disebut neuron. Sel saraf adalah sebuah sel yang berfungsi untuk menghantarkan impuls (rangsangan). Setiap satu sel saraf (neuron) terdiri atas tiga bagian utama yang berupa badan sel saraf, dendrit, dan akson. Berikut adalah gambar dan bagian-bagian struktur sel saraf (neuron) beserta penjelasannya:
gambar sel saraf (neuron) dan bagian-bagian sel saraf (neuron) dalam Bahasa Indonesia
1.
Dendrit adalah serabut sel saraf pendek dan bercabang-cabang. Dendrit merupakan perluasan dari badan sel. Dendrit berfungsi untuk menerima dan mengantarkan rangsangan ke badan sel.
2.
Badan Sel adalah bagian yang paling besar dari sel saraf. Badan sel berfungsi untuk menerima rangsangan dari dendrit dan meneruskannya ke akson. Badan sel saraf mengandung inti sel dan sitoplasma.
3.
Nukleus adalah inti sel saraf yang berfungsi sebagai pengatur kegiatan sel saraf (neuron).
4.
Neurit (Akson) adalah tonjolan sitoplasma yang panjang (lebih panjang daripada dendrit), berfungsi untuk menjalarkan impuls saraf meninggalkan badan sel saraf ke neuron atau jaringan lainnya. Jumlah akson biasanya hanya satu pada setiap neuron.
5.
Selubung Mielin adalah sebuah selaput yang banyak mengandung lemak yang berfungsi untuk melindungi akson dari kerusakan. Selubung mielin bersegmen-segmen. Lekukan di antara dua segmen disebut nodus ranvier.
6.
Sel Schwann adalah jaringan yang membantu menyediakan makanan untuk neurit (akson) dan membantu regenerasi neurit (akson).
7.
Nodus ranvier berfungsi untuk mempercepat transmisi impuls saraf. Adanya nodus ranvier tersebut memungkinkan saraf meloncat dari satu nodus ke nodus yang lain, sehingga impuls lebih cepat sampai pada tujuan.
8.
Sinapsis adalah pertemuan antara ujung neurit (akson) di sel saraf satu dan ujung dendrit di sel saraf lainnya. Pada setiap sinapsis terdapat celah sinapsis. Pada bagian ujung akson terdapat kantong yang disebut bulbus akson. Kantong tersebut berisi zat kimia yang disebut neurotransmiter. Neurotransmiter dapat berupa asetilkolin dan kolinesterase yang berfungsi dalam penyampaian impuls saraf pada sinapsis.
Sel-sel saraf (neuron) bergabung membentuk jaringan saraf. Ujung dendrit dan ujung akson lah yang menghubungkan sel saraf satu dan sel saraf lainnya. Menurut fungsinya, ada tiga jenis sel saraf yaitu:
1.
Sel saraf sensorik adalah sel saraf yang mempunyai fungsi menerima rangsang yang datang kepada tubuh atau panca indra, dirubah menjadi impuls (rangsangan) saraf, dan meneruskannya ke otak. Badan sel saraf ini bergerombol membentuk ganglia, akson pendek, dan dendritnya panjang.
2.
Sel saraf motorik adalah sel saraf yang mempunyai fungsi untuk membawa impuls saraf dari pusat saraf (otak) dan sumsum tulang belakang menuju otot. Sel saraf ini mempunyai dendrit yang pendek dan akson yang panjang.
3.
Sel saraf penghubung adalah sel saraf yang banyak terdapat di dalam otak dan sumsum tulang belakang. Neuron (sel saraf) tersebut berfungsi untuk menghubungkan atau meneruskan impuls (rangsangan) dari sel saraf sensorik ke sel saraf motorik.
1.2. Sel Glial
Sel Glial berfungsi diantaranya untuk memberi nutrisi pada sel saraf. Macam-macam neuroglia diantaranya adalah astrosit, oligodendrosit, mikroglia, dan makroglia.
2. Sistem Saraf Pusat
Pusat saraf berfungsi memegang kendali dan pengaturan terhadap kerja jaringan saraf hingga ke sel saraf. Sistem saraf pusat terdiri atas otak besar, otak kecil, sumsum lanjutan (medula oblongata), dan sumsum tulang belakang (medula spinalis). Otak terletak di dalam tulang tengkorak, sedangkan sumsum tulang belakang terletak di dalam ruas-ruas tulang belakang.
Tiga materi esensial yang ada pada bagian sumsum tulang belakang serta otak antara lain, yaitu:
1.
Substansi grissea atau bagian materi kelabu yang terbentuk dari badan sel.
2.
Substansi alba atau bagian materi putih yang terbentuk dari serabut saraf.
3.
Jaringan ikat atau sel-sel neuroglia yang ada di dalam system saraf pusat tepatnya di antara sel-sel saraf yang ada.
Selain itu, pada sistem saraf pusat terdapat juga Jembatan varol yang tersusun atas serabut saraf yang menghubungkan otak kecil bagian kiri dan kanan, juga menghubungkan otak besar dengan sumsum tulang belakang. Jembatan varol berfungsi menghantarkan rangsang dari kedua bagian serebelum.
2.1. Otak Besar
Otak besar wujudnya kenyal, lunak, ada banyak lipatan, serta berminyak. Otak besar dikelilingi oleh cairan serebrospinal yang berfungsi memberi makan otak dan melindungi otak dari guncangan. Di dalam otak besar terdapat banyak pembuluh darah yang berfungsi memasok oksigen ke otak besar.
Bila otak besar pada laki-laki beratnya kira-kira 1,6 kg sedangkan bagi perempuan berat otak besar yang di miliki kira-kira adalah 1,45 kg. Jadi otak laki-laki yang lebih berat dikarenakan ukurannya yang juga lebih besar di bandingkan dengan otak wanita. Namun kecerdasan yang dimiliki masing-masing orang baik laki-laki maupun perempuan tidak tergantung dengan berat otak yang mereka miliki. Tapi yang mengukur dan menentukn tingkat kecerdasan yang ada pada otak yaitu yang jumlah hubungan antar saraf satu dengan lainnya itu dalam jumlah banyak.
2.2. Otak Kecil
Otak Kecil terletak di bagian belakang kepala dan dekat leher. Fungsi utama otak kecil adalah sebagai pusat koordinasi gerakan otot yang terjadi secara sadar, keseimbangan, dan posisi tubuh. Jika terjadi rangsangan yang membahayakan, gerakan sadar yang normal tidak mungkin dilaksanakan. Otak kecil merupakan pusat keseimbangan. Apabila terjadi gangguan (kerusakan) pada otak kecil maka semua gerakan otot tidak dapat dikoordinasikan.
2.3. Sumsum Lanjutan
Sumsum lanjutan (sumsum sambung) atau medula oblongata terletak di persambungan antara otak dengan tulang belakang. Fungsi sumsum lanjutan adalah untuk mengatur suhu tubuh, kendali muntah, pengatur beberapa gerak refleks (seperti batuk, bersin, dan berkedip), dan pusat pernapasan. Selain itu, sumsum lanjutan berperan untuk mengantarkan impuls yang datang menuju otak. Sumsum sambung pun mempengaruhi refleks fisiologi, seperti jantung, tekanan darah, volume, respirasi, pencernaan, dan sekresi kelenjar pencernaan.
2.4. Sumsum Tulang Belakang
Sumsum tulang belakang atau medula spinalis berada di dalam tulang belakang. Sumsum tulang belakang terbagi menjadi dua lapisan, yaitu lapisan luar yang berwarna putih dan lapisan dalam yang berwarna kelabu. Sumsum tulang belakang dilindungi oleh tulang belakang atau tulang punggung yang keras. Tulang punggung terdiri dari 33 ruas. Fungsi utamanya adalah sebagai pusat gerak refleks.
Di dalam sumsum tulang belakang, terdapat saraf sensorik, motorik, dan saraf penghubung. Fungsi saraf-saraf tersebut adalah sebagai pengantar impuls dari otak dan ke otak.
Sumsum tulang belakang memiliki fungsi penting dalam tubuh. Fungsi tersebut antara lain menghubungkan impuls dari saraf sensorik ke otak dan sebaliknya, menghubungkan impuls dari otak ke saraf motorik; memungkinkan menjadi jalur terpendek pada gerak refleks.
Skema gerak biasa adalah: impuls (rangsangan) > saraf sensorik > otak > saraf motorik > otot > gerakan
Skema gerak refleks adalah: impuls (rangsangan) > saraf sensorik > sumsum tulang belakang > saraf motorik > otot > gerak refleks
5. Penyakit Pada Sistem Saraf
Penyakit dan kelainan sistem saraf adalah penyakit atau kelainan yang mempengaruhi fungsi sistem saraf pada manusia. Penyakit dan kelainan dapat terjadi dan menyerang pusat saraf, yaitu otak dan sumsum tulang belakang, atau sel-sel saraf pada jaringan saraf. Karena otak adalah pusat kendali dari semua aktivitas sadar kita – berpikir, berkemauan, mengingat, dan sebagainya – maka penyakit dan kelainan pada otak dapat menyebabkan perubahan dan gangguan yang dirasakan seluruh tubuh.
Penyakit dan kelainan otak dapat menyebabkan kekacauan pikir dan emosi, gangguan fungsi organ tubuh, kelainan psikologis, dan sebagainya. Berikut ini adalah beberapa penyakit yang khususnya menyerang otak. Baik batang otak maupun kulit otak dan otak kecil.
5.1. Encephalitis
Encephalitis (Yunani: encekphalos (otak) dan itis (peradangan)) adalah peradangan otak. Peradangan otak ini dapat melibatkan pula struktur terkait lainnya. encephalomyelitis adalah peradangan otak dan sumsum tulang belakang, dan meningoencephalitis adalah peradangan otak dan “meninges” (membran yang menutupi otak). Penyebab encephalitis paling sering adalah karena infeksi mikroorganisme atau zat-zat kimia seperti timbal, arsen, merkuri (air raksa), dll.
5.2. Stroke
Kelayuan tiba-tiba otak akibat dari berkurangnya secara drastis aliran darah ke suatu bagian otak atau akibat pendarahan dalam otak. Keadaan ini berdampak antara lain kelumpuhan sementara atau menetap pada satu atau kedua sisi tubuh, kesulitan berkata-kata atau makan, dan lenyapnya koordinasi otot. Merokok, kolestrol tinggi, diabetes, penuaan, dan kelainan turunan adalah faktor utama penyebab stroke.
5.3. Alzheimer
Penyakit alzheimer ditandai oleh kerusakan sel saraf dan sambungan saraf di kulit otak dan kehilangan massa otak yang cukup besar. Gejala khas pertama yang muncul adalah pikun. Ketika makin buruk, kehilangan ingatan si penderita juga makin parah. Keterampilan bahasa, olah pikir, dan gerak turun drastis. Emosi jiwa dan suasana hati jadi labil. Penderita cenderung rentan dan lebih peka terhadap stres. Mudah terombang-ambing antara marah, cemas, atau tertekan. Pada tahap lebih lanjut, penderita kehilangan responsibilitas dan mobilitas serta kontrol terhadap fungsi tubuh.
5.4. Gegar Otak
Kehilangan sementara fungsi otak yang disebabkan oleh luka relatif ringan pada otak dan tak selalu berkaitan dengan ketidaksadaran. Orang yang kena gegar otak mungkin tak ingat apa yang terjadi sesaat sebelum atau setelah luka. Gejala gegar otak antara lain cadel berbicara, kebingunan berat, koordinasi otot terganggu, sakit kepala, pusing, dan mual.
5.5. Epilepsi
Epilepsi adalah kelainan kronik yang dicirikan oleh serangan mendadak dan berulang-ulang yang disebabkan oleh impils berlebihan sel-sel saraf dalam otak. Serangan dapat berupa sawan, hilang kesadaran beberapa saat, gerak atau sensasi aneh bagian tubuh, tingkah laku aneh, dan gangguan emosional. Serangan epilepsi umumnya berlangsung hanya 1-2 menit. Kemudian diikuti oleh kelemahan, kebingungan, atau kekurangtanggapan.
5.6. Narkolepsi
Narkolepsi adalah gangguan tidur yang ditandai dengan serangan tidur tiba-tiba dan tak terkendali di siang hari, dengan gangguan tidur di malam hari. Penderita bisa mendadak tertidur di mana saja dan kapan saja bahkan saat berdiri atau berjalan. Tidur berlangsung beberapa detik atau menit dan bahkan lebih dari sejam.
5.7. Afasia
Afasia adalah kerusakan dalam pengungkapan dan kepahaman bahasa yang disebabkan oleh kerusakan lobus frontal dan temporal otak. Afasia bisa disebabkan oleh luka kepala, tumor, stroke, atau infeksi.
5.8. Dementia
Kemunduran kapasitas intelektual – yang kronis dan biasanya kian memburuk – yang berkaitan dengan kehilangan sel saraf secara meluas dan penyusutan jaringan otak. Dementia paling biasa terjadi di kalangan lansia meskipun dementia ini dapat menyerang segala usia. Kondisi dementia dimulai dengan hilangnya ingatan, yang mula-mula tampak sebagai ketidakingatan atau kelupaan sederhana. Ketika memburuk, lingkup kehilangan ingatan meluas hingga penderita tak lagi ingat akan keterampilan, sosial, dan hidup yang paling dasar sekalipun.
BIOLOGI MENGATASI SAKIT SAAT MENTRUASI
Cara Mengatasi Nyeri Saat Menstruasi
Details
Written by Revina
Category: Menstruasi
-
Artikel Popular
* Cara Cepat Hamil
* Tanda-Tanda Kehamilan
* Proses Melahirkan
* Perkembangan Janin
* Menghitung Masa Subur
* Perkembangan Bayi
* Kanker Serviks
* Dongeng Anak
* Keputihan
* Makanan Bayi
* Masa Subur Wanita
* Proses Kehamilan
* Nama Bayi
* Arti Nama
Anda sering merasakan nyeri saat haid ? anda tidak perlu khawatir karena itu merupakan gejala normal dari serangkaian Premanstrual Syndrome atau PMS. Penyebab PMS diduga karena adanya faktor hormonal yaitu terjadi karena tidak sempurnanya proses ovulasi yang diakibatkan tidak seimbangnya hormon. Bisa saja penyebab ketidakseimbangan hormon estrogen dan progesteron atau dapat juga disebabkan karena estrogen dominan yang berlebih yang berasal dari luar tubuh.
Adapula yang mengatakan sesuai penelitian yang ditemukan , PMS disebabkan estrogen dan hormon menstruasi yang berinteraksi dengan serotin. PMS juga dihubungkan dengan adanya asupan vitamin B , kalsium dan juga magnesium. Gejala PMS akan muncul satu atau dua minggu sebelum anda mengalami menstruasi.
Gejala-gejala yang mungkin terjadi pada anda akan mengalami menstruasi, yaitu:
1. Payudara nyeri dan mengalami bengkak
2. Mengalami pusing
3. Nyeri pada perut bagian bawah
4. Kembung
5. Depresi
6. Kelelahan
Adapun cara untuk mengatasi nyeri saat haid yang bisa anda lakukan adalah sebagai berikut :
1. Konsumsi makanan sehat
Perbanyak makanan yang mengandung kalsium, magnesium, vitamin D, vitamin E dan omega 3. Mengkonsumsi buah dan sayur aneka warna, ikan,labu dan juga makanan yang banyak mengandung protein nabati.
2. Kompres perut
Anda dapat mengompres perut dan punggung bawah dengan menggunakan bantalan pemanas. Adapula yang melakukan rileksasi dengan cara berendam di dalam air hangat untuk mengatasi nyeri menstruasi.
3. Berbaring
Anda bisa mencoaba berbaring di tempat tidur ataupun sifa untuk mengurangi rasa nyeri. Biasa anda akan merasakan nyeri saat menstruasi pada bagian punggung . Dengan cara berbaring anda akan meredakan rasa nyeri. Gunakan bantal untuk menyangga lutut dan ambil nafas panjang perlahan buang. Lakuakan hingga anda merasa nyaman.
4. Pijatan lembut
Pemijatan ringan dapat dilakukan pada bagian perut bawah secara merata dan tulang pinggang . Lakukakan juga pemijatan secara hati-hati pada otot sekitar pusar dengan cara mencubit . Anda juga bisa menyempurnakan pijatan ringan di sebelah otot bagian dalam tulang kering dari atas sampai bawah.
5. Minum Jamu
Obat tradisional sering digunakan dalam mengatasi nyeri haid. Anda bisa menggunakan ramuan dengan mencampurkan 15-30 gram daun dewa dengan 20 gram kunyit kemudian direbus dengan 600 cc air. Sisakan setengahnya kemudian disaring dan airnya dapat diminum 2 kali sehari.
6. Olahraga ringan
Olahraga yang bisa membantu anda meringankan nyeri haid adalah dengan berjalan kaki. Dengan anda melakukan jalan kaki dapat membuat gerakan otot sehingga dapat meningkatkan denyut jantung, bisa anda lakukan selama 30 menit secara teratur . Jogging juga bisa menjadi alternatif untuk anda meringankan nyeri haid. Dengan jogging anda dapat memperlancar aliran darah sekaligus untuk meningkatkan metabolisme tubuh. Alternatif lainnya yaitu yoga. Dengan yoga anda dapat mengatur pernapasan saat menstruasi selain itu juga olahraga ringan seperti yoga dapat membuat anda rileks serta meningkatkan sirkulasi darah
7. Konsultasikan kepada dokter
Pilihan ini bisa menjadi alternatif terakhir anda. Disarankan untuk anda berkonsultasi dengan dokter. Meskipun pada umumnya wanita yang mengalami menstruasi akan merasakan nyeri tetapi jika nyeri tidak hilang dan sangat mengganggu bisa jadi awal adanya gejala masalah pada alat reproduksi. Sehingga pemeriksaan dokter akan membantu anda untuk mengetahui lebih awal dan memberikan penanganan yang tepat.
Sumber : Cara Mengatasi Nyeri Saat Menstruasi http://bidanku.com/cara-mengatasi-nyeri-saat-menstruasi#ixzz2yRrpG0rZ
Langganan:
Postingan (Atom)